Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor.

نویسندگان

  • Daniel A Horke
  • Quansong Li
  • Lluís Blancafort
  • Jan R R Verlet
چکیده

Quinones feature prominently as electron acceptors in nature. Their electron-transfer reactions are often highly exergonic, for which Marcus theory predicts reduced electron-transfer rates because of a free-energy barrier that occurs in the inverted region. However, the electron-transfer kinetics that involve quinones can appear barrierless. Here, we consider the intrinsic properties of the para-benzoquinone radical anion, which serves as the prototypical electron-transfer reaction product involving a quinone-based acceptor. Using time-resolved photoelectron spectroscopy and ab initio calculations, we show that excitation at 400 and 480 nm yields excited states that are unbound with respect to electron loss. These excited states are shown to decay on a sub-40 fs timescale through a series of conical intersections with lower-lying excited states, ultimately to form the ground anionic state and avoid autodetachment. From an isolated electron-acceptor perspective, this ultrafast stabilization mechanism accounts for the ability of para-benzoquinone to capture and retain electrons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-resolved photoelectron imaging of the chloranil radical anion: ultrafast relaxation of electronically excited electron acceptor states.

The spectroscopy and dynamics of near-threshold excited states of the isolated chloranil radical anion are investigated using photoelectron imaging. The photoelectron images taken at 480 nm clearly indicate resonance-enhanced photodetachment via a bound electronic excited state. Time-resolved photoelectron imaging reveals that the excited state rapidly decays on a timescale of 130 fs via intern...

متن کامل

Excited states in electron-transfer reaction products: ultrafast relaxation dynamics of an isolated acceptor radical anion.

The spectroscopy and ultrafast relaxation dynamics of excited states of the radical anion of a representative charge-transfer acceptor molecule, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, have been studied in the gas phase using time-resolved photoelectron spectroscopy. The photoelectron spectra reveal that at least two anion excited states are bound. Time-resolved studies show that ...

متن کامل

Ultrafast photoinduced electron transfer reactions in supramolecular arrays: From charge separation and storage to molecular switches

Photochemical electron transfer reactions on a picosecond time scale have been studied in two covalently-linked donor-acceptor systems. The first molecule is a chlorophyll-porphyrin-quinone triad that closely mimics photosynthetic charge separation by undergoing picosecond electron transfer in low temperature glasses to yield a radical ion pair that lives for 2 ms and exhibits spin-polarization...

متن کامل

DNA strand scission and free radical production in menadione-treated cells. Correlation with cytotoxicity and role of NADPH quinone acceptor oxidoreductase.

Menadione (MD; 2-methyl-1,4-naphthoquinone), a redox cycling quinone was shown to induce single (ss)- and double (ds)-strand DNA breaks in human MCF-7 cells. This DNA damage was mediated via the hydroxyl radical as evidenced by electron spin resonance spectroscopy (ESR) studies utilizing the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide. The free radical production and DNA damage were shown to pl...

متن کامل

Orientation of the phylloquinone electron acceptor anion radical in photosystem I.

The photosynthetic reaction center of photosystem I (PS I) contains a phylloquinone molecule (A1) which acts as a transient electron acceptor. In PS I form the cyanobacterium Synechocystis PCC 6803 under reducing conditions, we have photoaccumulated an EPR signal assigned to the phylloquinone radical anion. The phylloquinone EPR spectrum has been studied in oriented multilayers of PS I using EP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature chemistry

دوره 5 8  شماره 

صفحات  -

تاریخ انتشار 2013